
Technical Guide

SmartFlare[™] RNA Detection Probes: Principles, protocols and troubleshooting

Principles of SmartFlare[™] technology

RNA detection traditionally requires transfection, laborious sample prep, RNA amplification and/or detection based on standard curves. In contrast, SmartFlare™ RNA Detection Probes are endocytosed by live cells using existing cellular endocytosis machinery. Sample prep is unnecessary; simply add SmartFlare™ Probes to your cultures, incubate overnight and detect the next day. Over time, the probes exit the cell, without adverse effects, allowing for subsequent downstream assays.

Each SmartFlare[™] probe consists of a gold nanoparticle conjugated to multiple copies of a double-stranded oligonucleotide, in which one strand (the "reporter strand") bears a fluorophore that is quenched by its proximity to the gold core (Figure 1). When the nanoparticle comes into contact with its target RNA, the target RNA binds to its complementary "capture" strand and displaces the reporter strand. The reporter strand, whose fluorophore is now unquenched, fluoresces and can be detected using any fluorescence detection platform.

Figure 1. Molecular mechani

Molecular mechanism of SmartFlare™ RNA Detection Probe

Experimental setup

Summary of basic procedure:

(detailed cell testing protocol on page 4)

- 1. Add cells to well at 60-80% confluency
- 2. Prepare SmartFlare[™] reagent (see below)
- 3. Add reagent to cells (100pM)
- 4. Incubate overnight (16 hours)
- 5. Analyze using fluorescence detection platform of choice

Materials required but not provided:

- Sterile, nuclease-free water (Milli-Q[®] water recommended)
- 2. Phosphate-buffered saline, sterile
- 3. Laminar flow hood
- 4. Calibrated multichannel pipettor
- 5. Vortexer
- 6. Tissue culture incubator
- 7. RNAse/DNAse-free pipette tips and microtubes
- 8. Multiwell culture plates

Storage and handling of SmartFlare[™] reagent:

Stable for five years at 2-8 °C degrees in lyophilized format ONLY. After reconstitution, store at room temperature* for up to 1 year.

*Warning: after reconstitution, product is sensitive to both cold and hot temperatures. A stable room temperature of 23-27 °C is recommended for storage.

Interpretation of lyophilized reagent

SmartFlare[™] materials:

(see Figure 2 for schematic)

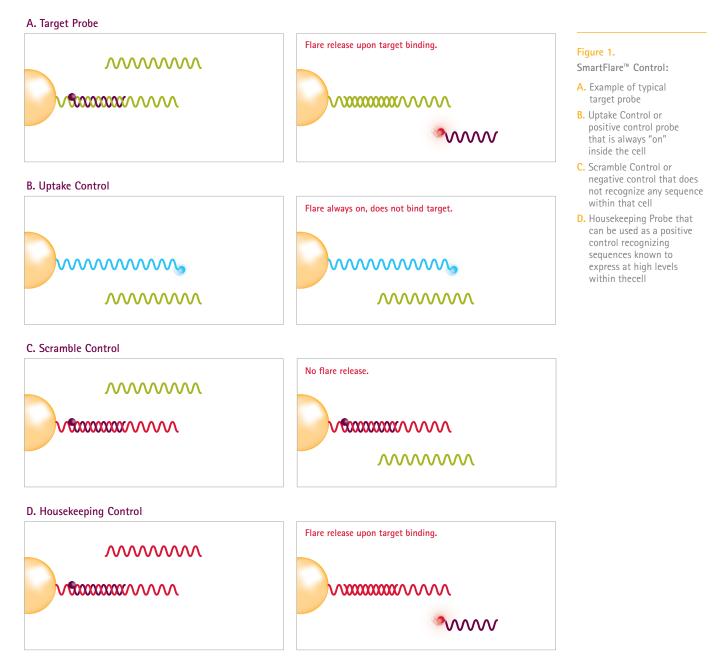
- 1. Target-specific SmartFlare[™] probe
- 2. Cellular uptake control
- 3. Scramble control for specificity
- Housekeeping control binds to RNA expressed at levels that do not change with respect to independent variables

Prepare SmartFlare[™] reagent:

(reconstitution of lyophilized reagent)

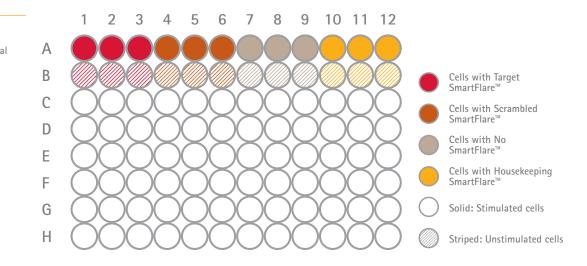
Add 50 uL sterile, nuclease-free water in a dropwise fashion. Tap the tube repeatedly to dissolve lyophilized material. Vortex for 5-10 seconds.

After reconstitution, store at room temperature for up to one year, protected from light. Product must be handled with gloves because the product can be absorbed through the skin.


Before adding reconstituted reagent to cells, check its appearance and refer to Table 1 for interpretation and/or actions to take prior to use.

Appearance	Interpretation	Actions
	Material is of uniform color and no precipitation is evident.	None
	Material may appear translucent with or without minor precipitation	Brief sonication for 10 seconds in a sonicating water bath followed by vortexing for 5 seconds may return product to normal homogenous consistency.
-	Material has clearly precipitated. Red (opaque) and clear phases are evident.	Do not use material. Order replacement material.

Table 1.


For best results, compare reagent appearance to this table before use and perform recommended actions.

Experimental controls

Experimental procedure

For the best results, perform each SmartFlare[™] treatment or control treatment using at least three replicates. Refer to Figure 2 for an example of an experiment performed in 96-well format.

Cell testing protocol

(recommended protocol for testing a cell-probe combination for the first time)

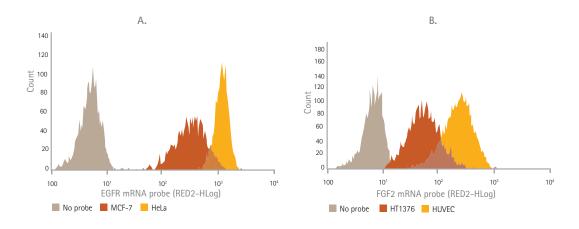
- Plate cells at desired density (typical example: 30,000 cells in 200 μL complete medium in each well of a 96-well plate)
- Dilute reconstituted SmartFlare[™] reagent 1:20 in sterile phosphate-buffered saline to create working solution
- Add 4 µL diluted SmartFlare[™] reagent to each well of cells (which are 60-80% confluent)
- Incubate overnight (16 hours) at appropriate temperature (37 °C), CO2 (5%) and relative humidity.
- Detect fluorescence using platform of choice: flow cytometer, fluorescence plate reader, imaging cytometer, fluorescence microscope, etc.

Fluorescence detection parameters

To detect SmartFlare^M signals in treated cells, use a fluorescence detection platform that excites the specific conjugated fluorophore(s) at the wavelength of maximum excitation (excitation (nM) in Table 2) and that is set up to acquire signals at the wavelength of maximum emission (emission (nM) in Table 2).

Physical properties of Fluorophores

Fluorophore Dye	Excitation (Lamda, nM)	Emission (Lamda, nM)	PMT	Laser	Microscope Filter
CY5	650	670	Red2	Red	CY5 compatible filter
CY3	550	570	Yellow	Green	CY3 compatible filter
	CY5	Fluorophore Dye(Lamda, nM)CY5650	Fluorophore Dye(Lamda, nM)(Lamda, nM)CY5650670	Fluorophore Dye (Lamda, nM) (Lamda, nM) PMT CY5 650 670 Red2	Fluorophore Dye (Lamda, nM) (Lamda, nM) PMT Laser CY5 650 670 Red2 Red


Figure 2.

Sample map of a typical experiment analyzing expression of a single RNA with respect to cell treatment.

Table 2.

Physical properties of fluorophores conjugated to SmartFlare[™] RNA Detection Probes

Experimental results

Figure 3.

Flow Cytometry SmartFlare[™] Data

Using our technology to determine the mRNA levels of EGFR mRNA (A) in HeLa and MCF-7 cells as well as FGF2 mRNA (B) in HUVEC and HT1376 cells both of which correlate to their RT-PCR levels. Flow cytometry provides added information at the single cell level as well as how the expression is distributed within the population.

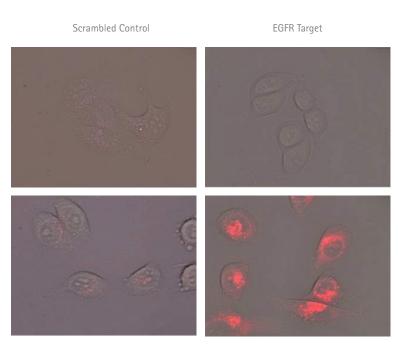


Figure 4.

Microscopy SmartFlare[™] Data

EGFR expression in MCF7 and HeLa cells compared to a scrambled sequence control. Specificity for the target of interest is evident in the fluorescence intensity of the EGFR probes in the HeLa cells vs the MCF-7 cells.

HeLa Cells

Troubleshooting

	Situation	Cause	Action
Instrument	Instrument can detect fluorophore but you are not seeing signal	Malfunctioning instrument	 Troubleshoot instrument with control sample (ie. fluorescent beads) Use an uptake control or housekeeping gene with same fluorophore
	Instrument not detecting fluorophore	Wrong filter/laser compat- ibility with fluorophore	 Determine correct fluorophore-instrument compatibility Get new SmartFlare[™] reagent or instrument filter/laser set
Precipitated material	Material has precipitated out of solution	 Improper storage conditions Temperature fluctuations Improper reconstitution Contamination 	 Brief sonication for 10 seconds in a sonicating water bath followed by vortexing for 5 seconds may return product to normal homogenous consistency. If above does not work, product will need to be replaced
Reagent not entering cells	See no signal in target, uptake control or housekeeping controls	 Poor cell health; dead and dying cells in sample Cells have low endocy- tosis rate and therefore are not up taking the particles 	 Check viability Determine if cell types have been validated to work with SmartFlare™ reagents; contact Technical Service to determine if cell types have been previously used with SmartFlare™ technology Increase concentration on incubation times
Unexpected results	Experimental error	 Wrong species Bad target design Cell types don't express target at detection time point Stimulation/modulation not successful 	 Repeat experiments with correct, target-specific designs Perform experiment with predicate method
	Signal detected from scramble control is higher than target probe signal	Degradation of scramble probeLow target expression	 Check material for precipitation Replace scramble control with fresh material
	Do not see differences in expression as expected	 Cell uptake differences Difference in expression too small to detect 	 Use uptake controls to normalize for uptake Contact Technical Service; they can inform you of expected uptake for given cell types Compare to alternate methods of RNA detection (RT-PCR, immunofluores- cence, microarray).

Troubleshooting

	Situation	Cause	Action
Bad target design	Custom designed probe not detecting target, but controls work	Flaw in the design of custom probe	Design and order an alternate probe
		Target may not be ex- pressed in cell type in the condition specified	Confirm that expression is expected with other techniques (RT-PCR, immunofluorescence, microarray)
		Levels too low to detect above background	Consider the possibility that the target is a low-expressing gene and may not be able to be detected using SmartFlare™ probes
	Manufacturer-designed ("shelf") probe not detecting target, but controls work	Target may not be ex- pressed in cell type in the condition specified	 Test reagent in one of our validated cell models Confirm that expression is expected with other techniques (RT-PCR, immunofluorescence, microarray)
		Levels too low to detect above background	Consider the possibility that the target is a low-expressing gene and may not be able to be detected using SmartFlare™ probes

To Place an Order or Receive **Technical Assistance**

In Europe, please call Customer Service: France: 0825 045 645 Germany: 01805 045 645 Italy: 848 845 645 Spain: 901 516 645 Option 1 Switzerland: 0848 645 645 United Kingdom: 0870 900 4645

For other countries across Europe, please call: +44 (0) 115 943 0840

Or visit: www.merckmillipore.com/offices

For Technical Service visit: www.merckmillipore.com/techservice

Get Connected!

Join Merck Millipore Bioscience on your favorite social media outlet for the latest updates, news, products, innovations, and contests!

facebook.com/MerckMilliporeBioscience

twitter.com/Merck4Bio

www.merckmillipore.com/offices

Merck Millipore and the M logo are trademarks of Merck KGaA, Darmstadt, Germany. TN4254ENEU BS-GEN-12-07308 6/2013 Printed in the USA. © 2013 EMD Millipore Corporation, Billerica, MA USA. All rights reserved.