Image - Barts and The London logo and link to home page Image - divider Image - divider
 
  Institute of Cell and Molecular Science
Flow Cytometry Core Facility equipment, images used with permission by BD
  Flow Cytometry Core Facility
  link Home link Instruments available link Flow cytometry link Uses of flow cytometry link Flow sorting link Links link Contacts
 
ER Stress

ER Stress

The ER is responsible for the folding and then delivery of proteins via the secretory pathway to a functional site. Misfolded proteins accumulate in the lumen of the ER due to high protein folding demand on the ER especially during autophagy. Only properly folded proteins are secreted with maintenance of the plasma membrane structure and ER folding capacity being under ER homeostatic control. Once a threshold of mis-folded protein accumulation has been reached, a signal activates the ER to nucleus signalling pathway or the unfolded protein response (UPR) causing ER chaperone proteins to be synthesised, which refold the mis folded proteins and translocate these proteins to the cytoplasm for degradation by the proteasome. This process results in an increase of the ER capacity to fold proteins and maintain ER homeostasis.  This increase in ER capacity is physically achieved by an increase in size of the ER at early stages of autophagy, see figure.

If the protein folding demand continues to increase, this will ultimately result in the phagy of the ER itself, which can be caused by ER stress as induced in vitro by thapsigargin, chloroquine (CQ), tunicamycin and dithiothreitol, DT), see figure.

Schematic of Reticulophagy

However in normal Jurkat T-cells & K562 cells showed increasing ER mass as the cell moves through the cell cycle, with S phase cells showed a 36% & 27% increase in ER mass above that detected in cells in G1 respectively. While cells in G2m show a 16% & 18 % increase in ER mass above that of S phase cells respectively, see figure.

Aggresomes

prior to macroautophagy induced ER phagy and the accumulation of mis-folded proteins within the ER, inclusion bodies form when the ubiquitin-proteasome machinery is overwhelmed by cytostolic protein aggregates to form transient structures termed Aggresome-like Induced structures or ALIS. The formation of ALIS has been shown to require signalling via mTOR and is thus independent of autophagy with ALIS being cleared by lysosomes alone. The binding of LPS or pathogens to TLR receptors not only causes NF-KB acitvation with mTOR signalling but up-regulation of p62 to form ALIS. Aggresomal responses are thought togive rise to Lewy bodies anf hyaline inclusion bodies observed in amyotrophic lateral sclerosis (ALS). Aggresosmes can be detected by use of the Proteostat Aggresome detection kit from Enzo Life Sciences which uses a red fluorescent molecular rotor dye which specifically detects denatured protein cargo within aggresomes and ALISs. Flow cytometry can used as well as fluorescent microscopy by excitation with blue laser and collection at 610nm. Protease inhibitor MG-132 can be used as a positive control for aggresome formation, see figure. For the link to Enzo Life Sciences Website for data supplied from this Flow Cytometry Core Facility

Cells producing misfolded proteins fthrough ER stress can also be measured in a cell cycle dependent manner, see figure.

 

 
Top
 

 

Measurement of Reticulophagy

 

Thapsigargin & Chloroquine Induced Reticulophagy

 

K562 Reticulophagy

Jurkat Reticulophagy

Flow Cytometric Analysis of Aggresomes

Images of Aggresomes

ER Stress & Cell Cycle Analysis

 

 

by Gary Warnes. © Queen Mary, University of London 2007
Institute of Cell and Molecular Science, The Blizard Building, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK Tel: +44 (0)20 7882 2483, Fax: +44 (0)20 7882 2200